In the previous section, we encountered permutations, which correspond to arrangement of objects /things/ entities. In this section, we will encounter combinations which correspond to selection of things (and not their arrangement). We do no intend to arrange things. We intend to select them. For example, suppose we have a team of cricket players. We intend to select a playing team of out of these players. Thus, we want the number of ways in which we can select players out of players. (We are not interested in arranging those players in a row – only the group/ combination of those players matters).
Let us make this concept more specific. Suppose we have a set of letters. In how many ways can we select a group of letters from this set? Suppose we had to find the number of arrangements of letters possible from those letters. That number would be . Consider the permutations that contain the letters and . These are in number, namely and .
Now, what we want is the number of combinations and not the number of arrangements. In other words, the permutations listed above would correspond to a single combination. Differently put, the order of things is not important; only the group/combination matters. This means that the total number of combinations of letters from the set of letters available to us would be since each combination is counted times in the list of permutations. Thus, if we denote the number of combinations of things taken at a time by , we have
In general, suppose we have things available to us, and we want to find the number of ways in which we can select things out of these things.
We first find the number of all the permutations of these things taken at a time. That number would be . Now, in this list of permutations, each combination will be counted times since things can be permuted amongst themselves in ways. Thus, the total number of combinations of these things, taken at a time, denoted by , will be
You should now be able to appreciate the utility of the fundamental principle of counting. Using only a step-by-step application of this principle, we have been able to obtain an expression for As we progress through the chapter, you’ll slowly realise that each and every concept that we discuss and each and every expression that we obtain follows logically as a consequence of this simple principle.
Example: 1 | |
Consider the word .
|
Solution: 1-(a) | |
We have vowels and consonants available in the word . A vowel can be selected in ways while a consonant can be selected in ways. Thus, a pair consisting of a vowel and a consonant can be selected in ways. Two vowels can be selected in ways while two consonants can be selected in ways.
|
Solution: 1-(b) | |
Since we want more than vowels, we could have or vowels in our -letter selection.
Suppose we select vowels for our -letter group. This can be done in ways. The two remaining letters (consonants) can be selected in ways. Thus, -letter groups containing vowels can be formed in ways. Similarly, if we had vowels, the possible number of groups would be. There’s only group possible containing (all) the vowels.
Thus, the number of required selections is
Now that we’re done with the introductions, lets move on and see some really interesting and diverse applications of the basic concepts covered till now.
|
No comments:
Post a Comment