tgt

## Friday, 8 August 2014

### CHAPTER 25 - Properties of Scalar Triple Product

Let us see some more significant properties of the $STP$:
(i) The $STP$ of three vectors is zero if any two of them are parallel. This implies as a corollary that $[\vec a\;\;\vec a\;\;\vec b] = 0$ (always)
(ii) For any $\lambda \in \mathbb{R}$,
 $[\lambda \vec a\;\;\vec b\;\;\vec c] = \lambda [\vec a\;\;\vec b\;\;\vec c]$
(iii) ${[(\vec a + \vec b)\,\,\,\,\vec c\;\;\vec d] = [\vec a\;\;\vec c\;\;\vec d] + [\vec b\;\;\vec c\;\;\vec d]}$
This property is very important and is used extremely frequently. The justification is straight forward:
 $[(\vec a + \vec b)\;\vec c\;\;\vec d] = (\vec a + \vec b) \cdot (\vec c \times \vec d)$ $= \vec a \cdot (\vec c \times \vec d) + \vec b \cdot (\vec c \times \vec d)$ Dot product is distributive over addition $= [\vec a\;\;\vec c\;\;\vec d] + [\vec b\;\;\vec c\;\;\vec d]$
(iv) Three vector are coplanar if and only if their $STP$ is zero. This is because the volume of the parallelopiped formed by the three vectors becomes zero if they are coplanar.
You are urged to rigorously prove the other way implication, i.e, prove that if $[\vec a\;\;\vec b\;\;\vec c] = 0$ where $\vec a\;\;\vec b\;\;\vec c$ are non-zero non-collinear vectors, then $\vec a,\;\;\vec b,\;\;\vec c$must be coplanar.
(v) Let $\vec a = {a_1}\hat i + {a_2}\hat j + {a_3}\hat k,\;\;\vec b = {b_1}\hat i + {b_2}\hat j + {b_3}\hat k$ and $\vec c = {c_1}\hat i + {c_2}\hat j + {c_3}\hat k$. Then,
 $[\vec a\;\;\vec b\;\;\vec c] = \vec a \cdot (\vec b \times \vec c) = ({a_1}\hat i + {a_2}\hat j + {a_3}\hat k) \cdot \left| {\begin{array}{*{20}{c}} {\hat i}\,\,\,\,{\hat j}\,\,\,\,{\hat k}\\ {{b_1}}\,\,\,\,{{b_2}}\,\,\,\,{{b_3}}\\ {{c_1}}\,\,\,\,{{c_2}}\,\,\,\,{{c_3}} \end{array}} \right|$ $= {a_1}({b_2}{c_3} - {b_3}{c_2}) + {a_2}({b_3}{c_1} - {b_1}{c_3}) + {a_3}({b_1}{c_2} - {b_2}{c_1})$ $= \left| {\;\begin{array}{*{20}{c}} {{a_1}}\,\,\,\,{{a_2}}\,\,\,\,{{a_3}}\\ {{b_1}}\,\,\,\,{{b_2}}\,\,\,\,{{b_3}}\\ {{c_1}}\,\,\,\,{{c_2}}\,\,\,\,{{c_3}} \end{array}\;} \right|$
This relation is quite useful and is worth remembering.