Now that we’ve had an intuitive introduction to limits, how do we go about evaluating limits for arbitrary functions
For example, consider . How does this function behave as (This, as we have seen in the previous section, is an indeterminate form).
Before moving any further, one should note that if a function is determinate at and ‘continuous’at , implying that the graph of has no ‘break’ at ‘’ (and in it’s neighbourhood), the limit of at can be evaluated by direct substitution. That is,
This will become obvious once we consider an example. Take .
Consider . From the graph, we see that since is ‘continuous’ at (it has no break), will approach the same value from both sides, equal to
Hence,
Thus, any determinate limit can be evaluated by direct substitution of . (The function needs to have no breaks at )
For example
What about
The limit does not exist ( is discontinuous at the point )
Note: Do not confuse continuity with existence of limits. Existence of limit at implies Continuity of at implies . We will soon study continuity in more detail.
The issue now is how to evaluate limits for indeterminate forms. This is the subject of the next section (where some standard indeterminate limits will be evaluated).
For now, observe some general rules pertaining to limits. These are more or less self explanatory.
Let and
If exist, then:
(i) | |||||
(ii) | |||||
(iii) | |||||
(iv) | |||||
(v) | |||||
(vi) if the latter is defined
| |||||
(vii)
For example,
There needs to be a slight addition to this rule. Can you see what
Then Consider and
Is this equal to
Does the former limit even exist
Based on the answers to these questions, modify the rule above.
| |||||
(viii) We now come to an interesting rule, called the ‘Sandwich Rule’. As the name suggests, this rule describes the behaviour of a function ‘sandwiched’ between two different functions and . At , if and , tend to the same value , and is sandwiched between and , it will obviously also tend to the same value .
For the graph above, in the neighbourghood of , we see that the following always holds:
or is sandwiched between and .
Also, since we have
This is the sandwich theorem.
Let us now move on to the evaluation of some standard indeterminate limits. A good grasp on these limits will help you evaluate almost all limits with ease.
|
No comments:
Post a Comment