Example: 1  
Solve the DE 
Solution: 1  
Step1
Upon rearrangement, this DE gives

Step2
From the last page, the L.H.S of is the exact differential . Thus, our DE reduces to
Integrating, we obtain the solution as

However, it is very likely that we won’t be able to make out just be inspection whether the DE is exact or not. If the DE is not exact, it can be rendered exact by multiplying it with an integrating factor I.F. In the case of the firstorder linear DE
the I.F. renders the DE exact:
and the solution is now obtainable by integration.
If fact, a systematic approach exists to determine the I.F. in a general case (if such an I.F. is possible at all.). However, we’ll not be discussing that approach here since it is beyond our current scope. Let us see another example, where the solution is easily obtained by the recognition of exact differentials present in the equation.
Example: 2  
Solve the DE 
Solution: 2  
Step1
Upon rearrangement, we have

Step2
Using the results on the last page, this can be written as

Step3
The solution is now obtained simply by integrating both sides :

As described in the introduction, differential equations are so important for the very reason that they find a wide application in studying all sorts of scientific phenomena. The motion of a body in a force field, radioactive decay and population growth were some of the phenomena mentioned that must use DEs for analysis. In some of the subsequent solved examples, we apply the DE solving techniques that we’ve learnt in the previous section, to solve practical and interesting problems.