Wednesday, 30 July 2014

CHAPTER 5- Double-Angle and Half-Angle Formulas

Double-Angle and Half-Angle formulas are very useful. For example, rational functions of sine and cosine will be very hard to integrate without these formulas. They are as follow

displaymath196

Example. Check the identities
displaymath198

Answer. We will check the first one. the second one is left to the reader as an exercise. We have
displaymath200
Hence
displaymath202
which implies
displaymath204

Many functions involving powers of sine and cosine are hard to integrate. The use of Double-Angle formulas help reduce the degree of difficulty.
Example. Write tex2html_wrap_inline206 as an expression involving the trigonometric functions with their first power.
Answer. We have
displaymath208
Hence
displaymath210
Since tex2html_wrap_inline212 , we get
displaymath214
or
displaymath216

Example. Verify the identity
displaymath218

Answer.We have
displaymath220
Using the Double-Angle formulas we get
displaymath222
Putting stuff together we get
displaymath224

From the Double-Angle formulas, one may generate easily the Half-Angle formulas

displaymath226

In particular, we have

displaymath228

Example. Use the Half-Angle formulas to find
displaymath230

Answer. Set tex2html_wrap_inline232 . Then
displaymath234
Using the above formulas, we get
displaymath236
Since tex2html_wrap_inline238 , then tex2html_wrap_inline240 is a positive number. Therefore, we have
displaymath242
Same arguments lead to
displaymath244

Example. Check the identities
displaymath246

Answer. First note that
displaymath248
which falls from the identity tex2html_wrap_inline250 . So we need to verify only one identity. For example, let us verify that
displaymath252
using the Half-Angle formulas, we get
displaymath254
which reduces to
displaymath256

No comments:

https://www.youtube.com/TarunGehlot